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Abstract

A good understanding of woven fiber preform permeabilities is critical in the design and optimization of the
composite molding processes encountered in resin transfer molding (RTM); yet these issues remain unresolved in the
literature. Many have attempted to address permeability predictions for flat undeformed fiber preform, but few have
investigated permeability variations for complex geometries of porous fibrous media. In this study, the objectives are to:
(i) provide a brief review of existing methods for the prediction of the fiber mat permeability; (ii) postulate a more
realistic representation of a unit cell to account for such fabric structures as crimp, tow spacing and the like; and (iii)
apply computational approximations to predict effective permeabilities for use in modeling of structural composites
manufacturing processes. The Stokes equation is used to model the flow in the inter-tow region of the unit cell, and in
the intra-tow region, the Brinkman’s equation is used. Initial permeability calculations are performed for a three-di-
mensional unit cell model representative of the PET-61 woven fabric composite. The results show good agreement with

experimental data published in the literature. © 2001 Published by Elsevier Science Ltd.

1. Introduction

A common thread linking both the isothermal and
non-isothermal modeling of the resin transfer molding
(RTM) process in the manufacture of composites is the
use of Darcy’s law to describe the flow of a resin fluid
through a fiber preform. As given by the Darcy’s
equation [1],

u=— X VP (1)
u
all of the complicated interaction between the fluid and
the fiber preform structure is lumped into the per-
meability tensor K, and accurate permeability data are
therefore a critical requirement in the design and opti-
mization of the RTM process. Traditionally, determi-
nation of the permeability tensor is best accomplished
through experimental measurements since for the most
part, various measurement techniques all yield con-
sistent results [2]. However, these measurements often
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require a large number of carefully controlled experi-
ments and, in general, have no predictive capability (i.e.,
each new material must be handled on a case-by-case
basis). As a consequence, the ability to analytically (for
simple cases) or numerically predict the permeability of
the fiber preform has for the past few years been the goal
of many researchers in the field of porous media flow. In
this paper, a literature review of early and current efforts
for predicting permeability is first presented. Then, the
governing equations and formulations pertinent in the
development of the present methodology are outlined.
Finally, an illustrative unit cell representative of a PET-
61 woven fabric composite is posed and the effective
permeabilities are predicted.

2. Early and current developments

The earliest recognized investigator of fluid flow
through isotropic porous media is Darcy [1], who pro-
posed after making heuristic observations from a packed
column experiment the following relation:

k oP

u:—pa. (2)
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Nomenclature

spatial derivatives of shape functions

¢, Cy permeability model constants

D; defined viscosity tensor

he element characteristic length

k, Kj; permeability values

K| flow-direction permeability

K, cross-flow permeability

K, K, K; permeability tensors

K coefficients of K* tensor

K inverse of permeability tensor
(eg, K* = K™Y

N;, N finite element shape functions

P, P pressure

R filament radius

R transformation matrix

Re global Reynolds number

(Re = p/p(|uG|he/2))

So specific surface exposed to the fluid per
unit volume of solid material

t; traction boundary condition

u,v,w velocity components

u velocity vector

uG global velocity vector

u, v, w velocity arrays; (uy,ua, ..., u,),
(v1,02,...,0,) and (wy,wa, ..., w,)

Vi fiber volume fraction

Greek symbols
boundary of domain
domain
porosity
effective porosity of unit cell
density

Lo ﬁG basis vectors
viscosity

T OSSO0

In 1927, Kozeny [3] theorized that a porous medium can
be represented by an assemblage of channels of various
cross-sections that are of a specific length. Permeability
can therefore be described in terms of a hydraulic radius
and other mathematical models soon followed, drawing
upon Kozeny’s idea of using channels to approximate
the porous medium. Unlike Darcy’s law for isotropic
porous media, Kozeny’s work recognized the pore
structure as having definite details which could be re-
placed mathematically with a simplified geometry.

The next significant development in the understand-
ing of porous media flow occurred when Carman pre-
sented what is now well known as the Kozeny—Carman
equation [4]

¢3

Tssi-er ?)

While some critics disagree with Carman’s modification
because it is incapable of reproducing Kozeny’s earlier
calculations [5], Carman claimed that the new equation
better agrees with experimental results than Kozeny’s
original equation [4]. In 1947, Brinkman [6] proposed a
more realistic porous medium flow relation,
VP = —%u + uVu. (4)
The presence of the Laplacian operator in Eq. (4) en-
ables the Brinkman equation to model flow around the
finite porous media where a boundary exists between the
open and the porous regions.

It is important to note that in the RTM process, the
employed fiber preform is typically made up of woven
fiber bundles, Fig. 1. Each of the fiber bundles is called a

Fiber Preform
Fiber Tow

Fiber Filament

Fig. 1. Schematic of fiber preform microstructures.
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tow, fiber or yarn, and each of the yarns, in turn, con-
tains many fibrils or filaments. A collection of yarns
comprises a structure known as a fabric, cloth, or a
preform mat. Thus, at the microscopic level, flow
through a fibrous porous medium is analogous to flow
through banks of a heat exchanger, and it was through
this analogy that researchers have sought to analytically
and numerically predict the permeability of the fiber
preform [2,7-11]. While the exact computational pro-
cedures vary from one researcher to another, the prob-
lem typically reduces to solving the Navier—Stokes
equations and/or variations of the Navier—Stokes
equations, and with Darcy’s law obtaining the per-
meability through back substitution.

Realizing the limitations of most existing models
which do not offer realistic representation of the woven
fabric architecture, in a previous work at the University
of Minnesota, Chung et al. [12] independently came up
with the notion of using a three-dimensional unit cell
for permeability predictions. As a first approximation,
Chung et al. [12] and Ngo et al. [13] used Darcy’s law
in both the inter-tow (i.e., fluid) and intra-tow (i.e.,
solid) regions. In the inter-tow region, an equivalent
permeability of the air gap was estimated by approxi-
mating the unit cell as a duct with a porous boundary.
In the intra-tow region, permeability models based on
Gebart [7] equations were used and the fibrils were
assumed to pack in a hexagonal arrangement. The
proposed methodology was validated and, compared
with experimental results published by Adams et al.
[14] for a PET-61 fabric, reasonable agreements were
achieved. Chung et al. [12] attributed the difference in
cross-flow permeability to the use of Darcy’s law.
They noted that the overall effective permeability of the
unit cell was highly sensitive to the equivalent air
permeability K,; and suggested that the Brinkman’s
equation may be a more appropriate model to use in
the simulation.

Unlike past efforts in modeling the microstructure
for determining the effective permeabilities, the present
developments introduce the notion of a micro/macro
unit cell from a different perspective and is based on a
more realistic representation of the three-dimensional
fabric architecture which includes tow crimp, spacing
and the like. Two levels of microstructures are assumed
and the prediction of the effective permeability values is
based on first treating the individual fibril as a solid
impermeable section and subsequently applying these
results to a 3-D representation of a micro/macro unit
cell. The overall developments, as presented in this
paper, are part of a general-purpose in-house research
code named On Composite Technology Of Poly-
meric Useful Structures (OCTOPUS) which inherits a
vast finite element library, mold filling techniques,
time integrators, stabilizing features, and constitutive
models.

3. Governing equations
3.1. The unit cell structure

Fig. 2 depicts a representative unit cell and its cor-
responding microstructural levels. The first level consists
of the intra-tow region where the fiber filaments are
treated as arrays of solid impermeable cylinders, and the
second level comprises of the micro/macro unit cell. The
unit cell, in turn, is made up of the tows in a woven
pattern and the fluid in the inter-tow region. In the
present study, the flow in the open or fluid region of the
unit cell is governed by both the continuity equation

V-u=0 (5)

and the Stokes equation
VP = uVu. (6)

In the intra-tow region where the tow consisted of
bundles of filaments and can therefore be treated as a
porous medium, the flow is modeled by the continuity
equation

V- (u) =0 ™)
and the Brinkman equation which is given by
V(P) = uV{u) — uK™" - (u). (8)

In the remainder of this paper, the volume-averaged
property of the Brinkman equation will be implicitly
implied, and the velocity and pressure terms are hence-
forth written without the “( )” notations.

For the case of a prescribed x direction pressure
gradient as seen in Fig. 3, the boundary conditions are as
follows:

e Onl:0u/ox=0,v=0,w=0and P=P,.
e On Iy Ou/ox=0,v=0,w=0and P=0.
e OnIjand I'y: t,=0, t,=0 and w=0, etc. (e.g.,

symmetric b.c.).

e Onlsandls:t, =0,v=0and¢ =0, etc. (e.g., sym-

metric b.c.).

The use of the Brinkman equation means that the ana-
lyst is required to provide the permeability of the porous
medium (e.g., the intra-tow region) as an input. For
this purpose, the present developments assume that the
fiber tow consists of parallel impermeable filaments
arranged in a periodic pattern so that only the flow in
one typical “representative cell” needs to be considered.
The arrangements considered are: (i) a quadratic array,
Fig. 4(a), and (ii) a hexagonal array, Fig. 4(b). The use
of these arrangements, in turn, allows for the perme-
ability models derived by Gebart [7] to be employed. For
the two cases of quadratic and hexagonal arrangements
of fiber filaments, the permeability equations derived by
Gebart [7] are:
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Fig. 2. Schematic diagram showing details of unit cell from microscopic to macroscopic level.

Fig. 3. Schematic diagram showing boundary conditions of
unit cell.
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Table 1 summarizes the values of Cy, Vi and ¢ for the
two types of fiber arrangements mentioned above.

3.2. Local/global transformation of permeability tensor

In the present developments, the permeability of the
intra-tow region is assumed to be transversely isotropic.
If the local x axis is taken to be along the direction of the
fiber tow, and the local y and z axes are defined to be in
the cross-tow directions as seen in Fig. 5, then the y
direction permeability is equal to the z direction per-
meability. In terms of Gebart’s [7] permeability equa-
tions, we have K., = K| and K, = K., = K,. With the
off-diagonal permeability components assumed to be
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Fig. 4. Schematic of idealized intra-tow filaments and rep-
resentative cell for quadratic and hexagonal fiber packing [7].
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Table 1
Parameter values of permeability equations [7]
Fiber arrangement Cy Vimax c
Quadratic 16 n 57
97v/2 4
Hexagonal 16 T 53
9I1v6 2v3

negligible (e.g, K, =K,. =K., ~0), the local per-
meability tensor of the intra-tow region reduces to

_ K 0 0
0 0 K,

In most situations, the local coordinates of the intra-tow
region do not always align with the global coordinate of
the unit cell. The undulation of the tow requires a ro-
tation of the permeability tensor when solving for the
effective permeability of the unit cell, and in the present
developments, such transformation is made by using the
basis vectors that define the local and the global coor-
dinate systems of the intra-tow and the unit cell regions,
respectively, Fig. 5. If both the local and the global co-
ordinate systems are dextra-orthogonally triads, then
the transformation from a Jocal coordinate frame, de-
fined by a set of basis vectors ﬁL = (xp,y.,2L), tOo a
(g:lobal coordinate frame, defined by a set of basis vectors
Il = (xGayG>zG)’ is [15]

R=1Il;-I. (12)

In matrix form, the transformation matrix R is written
as

XG- XL XG-YL XG-'3L
R=|yg-x Yo'y Y- |- (13)
ZGXL GYVL <G-3L

The product of the local permeability tensor with the
transformation matrices gives the global permeability
tensor

K1 K Kis
Ko=RK.R"= | Ky Kp Kp|. (14)
Ky Ky Ks

(a) Global coordinates

(b) Local coordinates

Fig. 5. Schematic of unit cell and fiber filament showing global and local coordinate systems.
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4. Finite element discretization
4.1. Momentum equation

Using the relevant components of the Stokes equa-
tion and the Brinkman equation, the momentum equa-
tion in the entire unit cell is written as

0=uVu—VP—ouK"' u 15
1 ft : (

where o is a computational parameter that is equal to 1
in the intra-tow region and 0 in the inter-tow or open
region. Thus, when « is equal to 0, Eq. (15) reduces to
the Stokes equation, and when « is equal to 1, Eq. (15) is
identical to the Brinkman equation. The scalar compo-
nents of Eq. (15) are:

e x momentum equation:

0= |2 (5,9 0 (%, v\ O (0u 0w
e\ M) T\ e T ) T\ & e
— o — (K u+ Ko+ Kisw). (16)

e y momentum equation:

— g %_._% +E 2 @ +i %_i_a_w
“laf\s ) T\t ) T\ Ty
oP

_a_y—“ﬂ(K;1”+K;2”+K;3W)- (17)

e 7z momentum equation:

— g aﬁ+al +g @+aiw +9 2 67w
“ oM\ ™ ay“ 0z Oy 2\ "%

oP
7§7MM(K;IM+K§21)+K§3W), (18)
where K7 are the components of the inverse of the global

permeablhty tensor K such that

Kn Ko Ks17' (K, K Kj
K =K'= |Ky Kn Kn =K K, K
Ky Kn K Ky Ky K

(19)

The boundary conditions of the above momentum
equations are:

u=1uy, V=100, WwW=wy On Fl (20)
and

t, = ( P+2u8x)nx+ﬂ(w+al)n}
+u(E+2)n.

= “(%"‘%)nx +
+‘U.< +an>n2

‘8 ). +u( +°W)ny

<_P+2M%>ny on I, (21)

t=u(%
+( P+2,ua”)

Consider for illustration the x momentum equation.
Invoking the Petrov—Galerkin weighted residual method
and using equal-order shape functions for both velocity
and pressure (i.e., PSPG formulations; see discussions in

next section), we get
RETN:
ay Jdy Ox

o= =
0 6u ow
— dQ — W— dQ
“ar(E )]
— / Wocy(Kl*lu+Kf217+K1*3w) dQ. (22)
Q
Using the Green—Gauss theorem on the first and second

integrals in Eq. (22) and approximating the variable
fields with

W =N, u=DNuw, v=Nv, w=Nw,

23
P NP, (23)
Eq. (22) becomes
oN; 6M ON; ON;
/Nt dr = { o Moy dQ L, o a—de
6N aN/ dQ+/N“:U'K11N dQ]u]
o] az
oN; GNJ
Q ouKy,N; dQ| v,
+ ay - d +/gN,ocu LN, d }vj
+ aaN aaNf dQ+ / N,-omKl*}N_,-dQ} W
Q

-| /Q aaN } (24)

where ¢, is the traction boundary condition given in Eq.
(21). Eq. (24) can also be written as

/ N't.dl = [ / B'D.BdQ + / NTocyKl*lNdQ}u
r

T
+ @aL a—NdQJr / NTocyKl*szQ}v
LJe
ONT oN
+ / ngode+ / NTocngNdQ}w
Q
oNT
— —NdQ 25
| Jo Ox } @)
where D, is the viscosity tensor defined as
2u 0 0
D=0 u O0f. (26)
0 0 u

Following the same FEM procedures described above,
the y momentum equation is discretized as:
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ONT oN
/ N't,dIr = { e, dQ+ / NToc,uKZINdQ}
r Q

+ / B'D,BdQ + /Q NTopu §2Nd9}v

T
| [ a—NdQ+ / NTopK;NdQ|w
LJo aZ a

oNT ]
- —NdQ 27)
/Q oy (
and the z momentum equation is discretized as

ONT oN
/NTt dr= { —ué—d9+/NTauK;1NdQ}u
Q

+ oN? dQ+ / NTouK,NdQ|v
L/ dy ﬂ 0z 2

+ / B'D.BdQ + / NTop §3NdQ}w
Q Q
[ [ oNT
- Q|P 2
[ naa|p (28)

D, and D. in Egs. (27) and (28) are the y and z viscosity
tensors defined as

w 0 0 w 0 0
=10 2u¢ 0| and D.,=|0 u O (29)

0 0 u 0 0 2u

respectively.

4.2. Continuity equation and pressure stabilizing Petrov—
Galerkin (PSPG) formulation

In the present developments, the continuity equation
given by
ou Ov Ow
is weighted using the normal finite element shape func-
tions. The weighted residuals of the momentum equa-
tions are then added to stabilize the pressure oscillations
so that equal order interpolation function can be used
on the pressure term [16]. The resulting formulations, as
described by Hughes [16], are termed the Pressure Sta-
bilizing Petrov—Galerkin (PSPG) formulation and pre-
sent the discretized continuity equation as

Oou Ov Ow
Wl —+—+—]dQ R.+7.R,+7.R.)dQ=0,
/Q (ax+ay+az) +‘/!;(y,\ x+/y }+/h )

(31)
where

ow ow ow
—;a '})},—)va, 'yz—/‘Lg (32)

and R; are the residual of the momentum equations
defined as

- 368) 35D
* Ox Ox gy \dy ox
0 (Ou Ow
Tt (a*a)}

aP * * *
+ i + ocu(KHu +Kjv+ K13w),

R, = — 9 aﬁ+@ _~_g 2 @
r 6xﬂ dy Ox dy “ay
0 v ow
ren(3e )] (33)

aP * * *
+ > + op (K5 u + Ky + Kyyw),

Rm [ 2 ) (2 2)
: Ox" \ 0z Ox dy \0z Oy
Sk
0 0 0z

+op(Kiyu + Ko + Kjyw).

Assuming that the viscous terms are negligible as could
be done for linear elements [16], and substituting defi-
nitions of y, into Eq. (31), the PSPG formulated conti-
nuity equation is defined as

ou Ov Ow
Of/gW(a—O—ay a)dQ

ow [opP
+/Z + ap(Kiju+ Ko + Kjyw) | dQ
o Ox o

ow [opP
+/Z ay {ay+oc,u(K21u+Kzzv+an)} dQ

/ A—— { + ap(Kyu + Ky +K33w)} dQ.

(34)
where
A= he ¢ = coth(Re) ! (35)
= = e) ——.
¢ 2lug|’ Re
Letting W = N;, and approximating
u=Nu;, v=DNyv, w=Nw, P=NP. (36)

Eq. (34) becomes

ONT st
/NT—dQ+/ABToc,u K; ¢NdQ|u

K

TaNT - Kp

+ N dQ+ | IB ous K5, pNdAQ|v
Q dy Q K
32
T ON' T K,*;

+ N —dQ+ AB aps K3 pNdQ|w
K3

+ / ABTB} P. (37)
LJe
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Finally, in matrix form, we have for both the momen-
tum and continuity equations the following system of
discretized equations:

K, K, K3 Ky u F,

K; Ky Ky Ky v _ Fy (38)
Ky K3 Kz Ky w F. (’

Ky Ki Ky Ky P 0

where the sub-stiffness matrices K;; and the load arrays
F; are given in Egs. (25), (27), (28) and (37) for the x, y, z
momentum equations and the continuity equation, re-
spectively.

5. Permeability prediction of PET-61 fabric

As an initial study, the permeability of a PET-61
fabric composite is predicted. As stated by Adams et al.
[14], PET-61 is a plain biaxially unbalanced weave
shown photographically in Fig. 6. The number of tows
per inch in the machine direction is 61, while that in the
cross direction is 41. The measured diameter of the PET-
61 fiber filament is 23 um and the number of filaments
per tow is 50 in both directions. In the present devel-
opments, the fiber filaments are assumed to pack in a
hexagonal arrangement because: (i) it is more difficult to
naturally stack the filaments in a quadratic arrangement,
and (ii) the filaments themselves tend to rearrange and
nest upon application of a compaction force at the
closing of the mold [9]. From these published data, a
unit cell representative of the biaxially woven PET-61
fabric is constructed and is given in Fig. 7a. The local
porosity of the tows aligned in the cross direction is

estimated to be 0.2, and for the tows aligned in the
machine direction, this value is 0.3. The overall or ef-
fective porosity of the unit cell is 0.47 and is defined here
as

b1 Total volume occupied by fibrils (39)
N Total volume of unit cell

Using Gebart’s permeability equations [7], the local
permeabilities of the tows oriented in the cross direction
are K| =249 x 10 cm? and K, =3.25 x 1071 cm?.
For the tows aligned in the machine direction, the local
permeabilities are K, =1.10x10® cm?> and
K, =2.17 x 107 cm?. Fig. 7 gives the solid model and
finite element mesh of the unit cell used in the perme-
ability prediction of PET-61 fabric. The dimensions of
the representative unit cell are 0.06 x 0.04 x 0.015 cm,
and the finite element mesh contains 2415 nodes and
1904 hexahedral elements. To be consistent with the
experimental procedures, a prescribed pressure gradient
is used to drive the flow; symmetric boundary conditions
are imposed on the remaining unit cell surfaces. In the
present developments, a prescribed pressure gradient of
1 Pa/cm is first applied in the x direction. The pressure
and velocity values are then iteratively solved and once
convergence is reached, the effective x direction perme-
ability is computed through back substitution of Darcy’s
law:

(u) = —inx<2—f>. (40)

The y direction permeability can similarly be obtained
by first imposing a pressure gradient in the y direction.
Then, using the converged pressure and velocity fields,

Machine direction

— > Crossdirection

Fig. 6. Photographic view of biaxially woven PET-61 fabric [14].
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(c) Solid region

(d) Fluid region

Fig. 7. Solid model and finite element mesh of unit cell.

the effective permeability is computed through back
substitution of Darcy’s law:

W =-18,(5 ) (@)

Since Adams et al. [14] did not describe the specific resin
used in their experiments, a viscosity value typical of
many polymeric resins used in RTM at room tempera-
ture (i.e., 0.1 Pa s) was used. The pressure contours of
the flow in the x and y directions are given in Figs. 8(a)
and 8(b), respectively. From the converged results of the
pressure and velocity fields, the effective permeabilities
of the PET-61 wunit cell are computed to be
K. =280x10"7 em? and K, =4.31 x 1077 cm?, or
28.4 and 43.7 Darcy. ' Compared to the experimental
data of K., =25 and K,, =40 Darcy for the PET-61
fabric as published by Adams et al. [14], the results
obtained by the present developments are very encour-
aging. The discrepancies between the two sets of results
can perhaps be attributed to any of the following fac-
tors:

e Slight inaccuracy in the unit cell microstructure di-
mensions: It was found during the simulations that
the results are very sensitive to the overall unit cell di-
mensions and that the open or inter-tow region alone

' 1 Darcy = 9.87 x 10~ cm? [5].

is largely responsible for the effective permeability
values. Compared to the published porosity value
of 0.415, the current unit cell’s effective porosity of
0.47 means that there is more room in both the
intra-tow and inter-tow regions for the fluid to flow
through. As a result, there is less resistance to the
flow of the fluid, and permeability, which is a
measure of the easiness of the flow through a porous
medium, is higher — as was predicted by the present
developments.

e Assumption of a hexagonal packing and the use of
Gebart’s permeability equations in the intra-tow re-
gion: The filaments in the actual experiments may
or may not nest in this configuration so it is inevitable
that differences between the computed intra-tow per-
meability and the experimentally obtained value will
occur. Nevertheless, since Phelan and Wise [8] report
from comparisons of their own experiments with per-
meability relations derived by Gebart [7] that the
computed permeabilities appear to bound the exper-
imental values, the choice of Gebart’s models in the
present developments is not totally unjustified.

It is worth nothing that in the present developments,

other values of pressure gradient ranging from —1 to —10

Pa/cm and viscosity values ranging 0.01-1.0 Pa s were

also used. The results obtained from these different

pressure/viscosity combinations, in all cases, differ by no

more than 3% from the predicted permeabilities of 28.4



3144 N.D. Ngo, K. K. Tamma | International Journal of Heat and Mass Transfer 44 (2001) 3135-3145

@

(b)

Fig. 8. Pressure contours of PET-61 unit cell.

and 43.7 Darcy. The authors believe that these differ-
ences are due more to the round-off errors associated
with the large difference in magnitude (often by several
orders) between the coefficients of the Stokes equation
and those of the Brinkman equation (which are due to
the Darcy’s like term) in the system of equations than to
the different pressure/viscosity values. This finding is in
agreement with the theoretical belief that permeability
should only be a function of the unit cell’s structural
properties (e.g., weave pattern, inter-tow spacing, intra-
tow porosity, etc.) and should, therefore, be independent
of the pressure gradient and the viscosity values.

As a final remark, since the fluid is considered to
occupy the entire unit cell, the results presented by the
present developments are valid only for prediction of
permeability in fully saturated systems. The effective
permeability in the z direction is not computed because
Adams et al. [14] reported no detectable flow in the
transverse direction of the PET-61 fiber mat.

6. Concluding remarks

Most current microscopic methods face limitations in
their inapplicability to predict permeability in realistic
complex fabric geometries and structural shapes. Their
implicit assumptions require a uniform repeating struc-
ture comprising aligned tows or fibrils and unfortu-
nately, in true fabrics, each tow encounters crimp and
the assumption of aligned cylinders does not always
apply. Therefore, while much progress has been made in
the study of permeability prediction, many of the models
proposed in the literature today [7,9-11,2,8] are only

applicable to composites consisting of unidirectional fi-
bers.

The present study, unlike past efforts in modeling the
microstructure for determining the effective permeabili-
ties, introduced the notion of a micro/macro unit from a
different perspective. It is based on a more realistic
representation of the three-dimensional fabric architec-
ture and assumes, in particular, two levels of micro-
structures: (i) treatment of the individual fibril as a solid
impermeable section, and (ii) subsequent application of
these results to a 3-D representation of a micro/macro
unit cell for predicting effective permeabilities.

In the present developments, the concept of using a
three-dimensional unit cell to predict permeability is
proposed. The flow in the open or fluid region of the unit
cell is governed by the continuity equation and the
creeping motion Stokes equation. In the intra-tow re-
gion where the tow consists of bundles of filaments and
can therefore be treated as a porous medium, the flow is
modeled by the continuity equation and the Brinkman
equation. The applied boundary conditions are: (i)
constant pressure gradient across two opposing surfaces
to drive the flow, and (ii) symmetric conditions of
pressure and velocity on the remaining surfaces of
the unit cell. In the intra-tow region, the permeability
of the porous medium (i.e., fiber tow) is modeled by the
equations derived by Gebart [7]. These are given in
terms of the axial K and cross flow K, permeabilities
and are valid for both quadratic and hexagonal filament
arrangements. The undulation of the tow through the
unit cell requires that a rotation of the permeability
tensor be provided when solving for the effective per-
meability of the unit cell.
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From the modeling of a unit cell based on the data
provided by Adams et al. [14], the permeabilities of
PET-61 multifilament biaxial fabric were computed to
be 28.4 and 43.7 Darcy for K., and K,,, respectively.
Compared to the experimentally measured values of 25
and 40 Darcy, the results predicted by the present de-
velopments are indeed very encouraging. Since various
factors such as difficulty in obtaining exact dimensions
of unit cell, slightly higher overall porosity value (0.47
versus published value of 0.415), filament nesting con-
figuration and the like, all have some effect on the
overall predicted permeability values, future efforts need
to account for and will be made to more accurately
describe the physics and mechanics of the representative
unit cell.
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